dy 200 i 400 A. Próby przeprowadzone w zwarcie w podstawie Katowice—
Dąb wykazały zdolność wyłączalną 15 kA. Miały one klasyczny układ przerywowy
złożony z 3 styków na biegun: styki opalne, pośrednie i główne. Komory
z azbesto-cementum były wyposażone w płytki dejonizujące. Wyłącznik miał na-
ped ręczny i nastawialne wyzwalacze cieplne i elektromagnetyczne oraz wyzwa-
lacznik zanikowy i wybijakowy. Były produkowane do 1955 r.

Równolegle, od 1947 do 1965 r. były produkowane w prywatnej firmie
R. Pasławski, a po jej upaństwowieniu — w zakładzie Apena, wyłączniki typu
ATK na prąd 400 i 500 A, o konstrukcji złożonej do typu WSS. Prąd wyłączalny wynosił ok. 30 kA.

Ponieważ wyłączniki powyżej już w latach pięćdziesiątych były racyj
jest przestarzałe, zakład Apena przystąpił do opracowania jednolitej, bardziej nowo-
wej serii uniwersalnych wyłączników APU na napięcia 500 V prądu prze-
miennego i 600 V prądu stałego. Główny parametry wyłączników tej serii pod-
dano w tabl. 3.17.

Wyłączniki APU zapewniają selektywny działanie zabezpieczeń zwarcio-
wej. Mogą być stosowane w układach, w których jest wymagane zdalne ste-
rowanie, sygnalizacja lub inne uzależnienie elektryczne. Na żądanie mogą być
przystosowane do pracy w warunkach klimatu tropikalnego i do pracy na sta-
kach monckích. Głównymi autorami tych wyłączników byli: mgr inż. M. Nawroż
i mgr inż. J. Gątkiewicz [3.94].

Uniwersalność i bogate wyposażenie pociąga za sobą silną rzeczy bardziej
skomplikowaną konstrukcję oraz stosunkowo większe ciężary i wymiary. Ponie-
waż w wielu przypadkach zagadnienie wymiarów ma istotne znaczenie, zakład
Elan przystąpił w 1958 r., opierając się na dokumentacji ze Związku Radzieckiego,
do uruchomienia produkcji serii WIS wyłączników małogabarzytych na
500 V, o prądach znamionowych 63—400 A. Prąd wyłączalny wynosi 3—15 kA,
trwałość mechaniczna — 10 000 łączeń. Wyłączniki mają zarówno podstawę, jak
i obudowę z tworzywa termowzdrownego. Komory wyłącznika są wyposażone
w płytki dejonizujące. Gaszenie luku następuje wewnątrz obudowy, co umoż-
liwia pracę wyłączników w pomieszczeniach zagrożonych pożarem. Styki są wy-
kone ze specjalnych spieków: srebro — nikiel, srebro — grafit, srebro — wol-
fram. Poczynając od 1960 r., poszczególne wielkości są wprowadzane do pro-
dukcji [3.41].

Ponadto zakłady Fael i Eltra (ten ostatni podległy Zjednoczeniu Przemysłu
Teletechnicznego i Elektronicznego) uruchomiły produkcję kilkunastu typów ma-
ych wyłączników samoczynnych (o prądach znamionowych do 25 A) z wyzwa-
laczaniami cieplnymi i elektromagnetycznymi, do włączania i wyłączania oraz do
ochrony od skutków przeżarzeń silników elektrycznych i obwodów instalacji
elektrycznej.

Odpalniki i przelączeni. Aparaty te produkują zakłady Apator, Apena, Elan,
Eltra oraz — w dość dużej liczbie — zakłady spółdzielcze. Obecny zakład Elan
kontynuował początkowo produkcję odpalników zatałcobiczych firmy Imaas,
typu OZ i FZ, o obciążalności znamionowej 63—1 500 A. W 1957 r. przeprowa-
dzono modernizację tej serii, obejmującą m.in. zmniejszenie gabarytów; otrzyma-
ła ona oznaczenie OZK i PZK. Produkcja ich została później przekazana
do spółdziedziczeń.

W latach 1963—1965 została opracowana nowa seria, typu LO, na prądy
160—630 A, odpowiadającą współczesnym wymaganiom. Są to odlączniki dwu-
przerwowe, z komorami lukowymi wyposażonymi w płytki dejonizujące i z ory-
ginalnym rozwiązaniem układu stykowego. Ponadto zakład Elan produkuje
przełączniki do zmiany kierunku wirowania silników.

Rys. 3.62. Odlącznik typu LO

Zakład Apena produkował przez pewien czas odlączniki i przełączniki na-
tablicowe, na prądy 200—1 000 A, przekazując później tę produkcję do spół-
dziedziczeń.

Zakład Apator uruchomił w 1951 r. produkcję odlączników do skrzynko-
wych rozdzielnic okapturzonych. Miały one jednak małą trwałość mechaniczną,
toż produkcja ich została wkrótce zaniechana. Na ich miejsce zakład opraco-
wał w latach 1955—1959 i uruchomił produkcję nowej serii, typu LR, o trwałości
mechanicznej 100 000 przestawień. Oprócz tego zakład produkuje przełączniki
gwiazda/trójkąt, przełączniki do zmiany kierunku wirowania silników i przełącz-
niki do zmiany prędkości (zmiana liczby biegów). W dużych ilościach są pro-
dukowane przez zakład Eltra łączniki warstwowe (tzw. pakietowe).

Aparatura dźwigowa. Produkcja tej aparatury rozwijała się po wojnie w poważ-
ną gałąź przemysłu elektrotechnicznego. Przez długi czas była ona rozproszona
w kilku zakładach: Eleser, Apena, Apator, Lumel. Sytuacja uległa zmianie od
1961 r., z chwilą uruchomienia fabryki aparatów przedsiębiorstwa Elta, przewi-

Rys. 3.63. Odlącznik typu LR

dzianej do specjalizowania się w produkcji aparatów trakcyjnych i dźwigowych.
Fabryka ta stopniowo przejmuje produkcję aparatów dźwigowych z innych za-
kładów.

Główne pozycje aparatury dźwigowej stanowią:
— nastawnik,
— sterownik,
— stanowiska fotelowe,
— oporniki rozruchowe i regulacyjne,
— zwalniaki hamulcowe,
— łączniki kraneczowe.

Produkcję nastawników podjęła bezpośrednio po wojnie Państwowa Fabry-
ka Aparatów Elektrycznych (obecny Eleser), operując się na dostępnych wzro-
mach zagranicznych. Były to nastawniki wallowe przestarzałego typu, dopuszcza-
jące niewielką częstość łączeń i wymagające stosunkowo dużego wysiłku przy
ich obsłudze. Dlatego też, już w 1950 r. zakład Eleser — na podstawie doku-
mentacji opracowanej przez Centralne Biuro Studiów i Konstrukcji Aparatów
Niskiego Napięcia — uruchomił produkcję bardziej nowoczesnego nastawnika
młoteczowego w dwóch odmianach: do silników o mocy do 72 kW i do 130 kW.
Przemysł elekrotechniczny w Polskiej Rzeczypospolitej Ludowej

Były one produkowane do 1960 r., po czym zostały zastąpione przez korzystniejszy, zwłaszcza dla większych silników, układ sterownikowo-stycznikowy lub przez opracowane w zakładzie Elta nastawniki krzywkowe typu ND.

Nastawники typu ND oznaczają się dobrymi parametrami technicznymi. Ich trwałość mechaniczna sięga 5 000 000, a trwałość elektryczna styków — ok. 150 000 łączeń. Ciężar ich jest około trzykrotnie mniejszy niż ciężar nastawników walcowych.

Rys. 3.64. Nastawnik krzywkowy dźwigowy typu ND

Do pośredniego sterowania silników o mocy większej niż 60 kW, jak również w przypadkach ciężkich warunków pracy, stosuje się zwykle zestaw składający się ze sterownika i przystosowanych do tego celu styków.

Sterowniki walcowe, produkowane początkowo przez zakład Apena, były zastąpione od 1959 r. sterownikami krzywkowymi produkcji zakładu Elester, a ostatnio — sterownikami zakładu Elta, o korzystniejszych parametrach.

W celu usprawnienia i ułatwienia pracy obsługi dźwigów, zakład Elester uruchomił w 1961 r. produkcję tzw. stanowisk fotelowych, składających się z zestawu kilku nastawników łatwo dostępnych do obsługi w siedzącej pozycji. Nowy, udoskonalony typ stanowiska fotelowego wszedł do produkcji w zakładzie Elta w 1966 r.

Rys. 3.65. Stanowisko sterownicze fotelowe

Oporniki rozruchowe i regulacyjne, żelazne i ze taśmy fechlowej były produkowane przez zakłady Elester i Apena. Później produkcję tę przejęły zakłady Elta i Wiefamek (ten ostatni jest w zasadzie producentem maszyn elektrycznych).

Przekaźniki. Spośród licznych odmian tych aparatów, o różnych zadańch działania i różnych funkcjach, opracowanie niniejsze dotyczy grupy przekaźników występujących w zabezpieczeniach i w automatycznych urządzeniach elektrycznych: wy-
twórczych, rozdzielczych i odbiorczych, czyli tzw. przekaźników energoelektrycznych. Aparaty te nie były produkowane w okresie międzywojennym, jeżeli nie liczyć niewielkiej ich produkcji do własnych wyłączników w fabryce K. Szpon-tański.

Po wojnie pierwszym producentem przekaźników była od 1947 r. Państwowa Fabryka Przekaźników i Specjalnych Aparatów Elektrycznych w Świdnikach (SAE), która powstała z połączenia paru niewielkich poniemieckich fabryk, m.in. fabryki przekaźników firmy Ribau.

Stopniowo, na tle wzrostu zapotrzebowania, produkcję przekaźników podejmowały inne fabryki. Obecnie produkuje się w kraju ok. 150 typów przekaźników energoelektrycznych. Z punktu widzenia asortymentu potrzeby są zaspokojone w ok. 80%, pod względem jednak ilościowym produkcja jest niewystarczająca. Konstrukcje ich w latach 1955—1965 uległy poważnej modernizacji, dzięki czemu ok. 60% typów odpowiada wymaganom światowym. Jakość jednak w produkcji seryjnej jest nie zawsze w pełni zdawalająca.

Produkcja jest zlokalizowana w kilku wymienionych dalej zakładach. Jednym z głównych producentów są Zakłady Wytwórcze Aparatury Precyzyjnej — Refa w Świdnikach (dawniej SAE). Po przeniesieniu w 1953 r. produkcji kontaktów samochodowych do Huty Baildon oraz aparatury oświetleniowej i regulacyjnej do oddziału w Kożuchowie, zakład Refa stał się jedyną w kraju fabryką specjalizującą się wyłącznie w produkcji przekaźników.

Uruchomiono produkcję przekaźników kierunkowych, spośród których podstawowym typem jest przekaźnik indukcyjny elektrodynamiwny typu RPL, oraz produkcję przekaźników cieplnych typu R1C-2.

Opracowano i wprowadzono do produkcji rodzinnie przekaźników nadprądowych indukcyjnych o charakterystyce zależnej, które rozpoczęły się w ZSRR.

Wprowadzono również do produkcji przekaźniki pośredniczące typu RU-910 i RU-920.

Łącznie, w zakładzie Refa uruchomiono produkcję ok. 100 typów przekaźników. Istnieje tendencja skoncentrowania się na mniejszej liczbie typów.

Drugim większym producentem przekaźników jest Oddział w Żarach zakładu Lumen, który ostatecznie przejął produkcję większości przekaźników pośredniczących, w tym przekaźników typu RU-910 i RU-920, z zakładu Refa, oraz przekaźników pośredniczących typu RES i RU-800 i przekaźników sygnalowych typu RUS-800 z zakładu im. Dymitrowa, w którym produkcja tego asortymentu została zaniechana.

Oba powyższe zakłady należą do Zjednoczenia Przemysłu Automatyki i Aparatury Pomiarowej — Mera.

Oprócz tych dwóch podstawowych producentów przekaźników, stosunkowo niewielkie ich ilości wykonuje kilka innych zakładów, w których nie stanowią one produkcji podstawowej.
Przemysł elektrotechniczny w Polskiej Rzeczypospolitej Ludowej

Należą do nich:
— Zakład Apena, produkujący od 1947 r. zabezpieczające przeźkażniki pierwotne, prądowe bezwloczne i ciepne — oraz napięciowe, przeznaczone do produkcji samochodowej, a na innych źródeł energii.
— Zakład Elektroniczny w Gliwicach, zajmuje się jako jedyny w kraju produkacją przeźkażników odległościowych transzytorowych, przeznaczonych do zabezpieczeń sieci 110 kV.

Z przemysłem przeźkażników współzajęcają Instytut Elektrotechniki, Przemysłowy Instytut Automatyki i Pomiarów, Politechnika Warszawska (Zakład Elektroenergetycznej Automatyki Zakładowej), Politechnika Wrocławska (Katedra Zabezpieczeń i Automatyki Elektroenergetycznej), Instytut Energetiki (Zakład Zabezpieczeń i Automatyki Elektroenergetycznej). Pracowania te prowadzą prace badawcze i współdziają na opracowywaniu nowych konstrukcji.

Spóźnianie wielu omian rozdzielnic, produkowanych przez zakłady ZPMIAE, należy wymienić wolnostojące rozdzielnice kostkowe, produkowane początkowo przez zakład Elan, a później przez zakład Elester [352]. Autorem koncepcji i roz-
Przemysł elektrotechniczny w Polskiej Rzeczypospolitej Ludowej

wiązania konstrukcyjnego tych rozdzielnic był mgr inż. Edward Machura. Rozdzielnica składa się ze szkieletu wykonanego z kształtników, w którym są umieszczone wsuwalne zestawy aparatów, zmontowane na ramie sankowej. Do połączenia elektrycznego zestawów z układem szyn służą styki nożowe szczękowe. Wymianę zestawów można wykonywać bez odłączania rozdzielnicy od sieci. Zakład Aparator specjalizuje się w produkcji rozdzielnic skrzynkowych żeliwnych i blaszanych oraz szaf przyłączowo-sterowniczych do obrabiarek.

Rys. 3.72. Rozdzielnica kościana typu Problock III

W zakładach Zjednoczenia Elektromontaż produkcję rozdzielnic niskiego napięcia podjęto w połowie lat pięćdziesiątych. Z biegiem czasu Elektromontaż stał się dużym producentem tych rozdzielnic, przy czym znaczną część tej produkcji jest przedmiotem eksportu.

Rozwiązania konstrukcyjne rozdzielnic przechodziły parokrotnie mutacje pod kątem ich unowocześnienia i ujednoliconia składowych elementów. Spośród aktualnie produkowanych odmian można wymienić jako najbardziej typowe:

- rozdzielnice przyściennie typu Rk-66 i wolnostojące typu Rw-66, na napięcia 380 i 500 V i prąd znamionowy pół zasilających 600—2 000 A;
- rozdzielnice universalne wieloobwodowe typu RUO-05, montowane ze skrzynek blaszanych, na prąd znamionowy 400 A (produkcja od 1964 r.).
rozdzielnicie kostkowe osłonięte typu Problon III, z wyłącznikiem typu APU, umożliwiające realizowanie różnych układów w zakresie dopływów od 400 do 2 000 A i odpływów od 15 do 1 000 A; produkcja tych rozdzielnic jest w trakcie uruchamiania;
- rozdzielnicie styczniowe sterownicze typu Elmo-GW, służące do realizowania układów zasilania, sterowania i sygnalizacji do potrzeb różnych procesów technologicznych;
- stacje transformatorowe kioskowe i przewoźne z odpowiednią aparaturą, na napięcie 5–50 kV, o mocach 400–630 kVA.

Uruchamia się produkcję szaf i pulsatorów z zastosowaniem elementów półprzewodnikowych do celów automatyki.

Aparatura przeciwybuchowa [3.3, 3.4]. W pomieszczeniach kopalnianych, niebezpiecznych pod względem wybuchowym, jest wymagane stosowanie aparatury w wykonaniu przeciwybuchowym. Składają się na nią:
- aparaty budowy wzmacnionej, które mogą być stosowane w pomieszczeniach o stopniu zagrożenia „b”, gdzie zawartość metanu w powietrzu nie przekracza 1%,
- aparaty budowy ognioodpornościowej, do stosowania w pomieszczeniach o stopniu zagrożenia „c”, gdzie zawartość metanu może przekraczać 1,5%.

W obu przypadkach aparaty łączeniowe, w których przy normalnej pracy występuje łyk lub iskrznicz, muszą być wykonywane w ościeżnieniu ognioodporna. Ponieważ aparaty budowy wzmacnionej różnią się stosunkowo nieznacznie od wykonania normalnego, dalszy opis rozwoju tej gałęzi produkcji jest poświęcony aparaturze ognioodpornościowej.

Produkcja aparatury ognioodpornościowej na skalę przemysłową nie istniała w Polsce przed wojną. Powojoenny rozwój przemysłu węglowego i związany z tym wzrost tempo elektryfikacji kopalń, m.in. gazowych, postawiły przed przemysłem elektrotechnicznym zadanie podjęcia produkcji aparatury dostosowanej do tych warunków pracy. Dołączyły się do tego potrzeby intensywnie rozwijającego się przemysłu chemicznego, w którym w wielu przypadkach występuje niebezpieczeństwo zapłonu mieszanin wybuchowych.

Pierwszym producentem aparatury ognioodpornościowej była Fabryka Sygnalów Kolejowych w Bydgoszczy, należąca w pierwszych latach po wyzwoleniu do przemysłu taboru kolejowego. Produkcja ta, uruchomiona w czasie okupacji (w 1942 r.), i stanowiąca już stosunkowo nieznaczną część programu fabryki, obejmowała początkowo kilka typów wyłączników, zaspokajając w niewielkim jedynie stopniu potrzeby górników węglowego, tak pod względem ilości, jak i asortymentu. Dopiero w połowie lat pięćdziesiątych nastąpił poważniejszy stopień. Istotnym rozszerzeniem bazy produkcyjnej aparatury ognioodpornościowej było wybudowanie zakładu Apator, który w 1958 r. rozpoczął jej produkcję. Oprócz wymienionych dwóch zakładów, specjalizujących się w tej dziedzinie, zakład

Elan uruchomił produkcję aparatów ognioodpornościowych do lokomotyw kopalnianych, a zakład ZWAR — ognioodpornościowych pól wysokiego napięcia typu ROK-6 (rys. 3.59).

Przez dłuższy czas produkcja i prace rozwojowe w zakładach Apator i Belma, należących do różnych zjednoczeń, przebiegały w sposób nieskoordynowany, co powodowało rozproszenie wysiłków i doprowadziło nawet do konfliktów dotyczących przeznaczenia aparatów elektrycznych do celów automatyki.

Dopiero w 1962 r. powołano, z inicjatywy Zjednoczenia Przemysłu Maszyn i Aparatów Elektrycznych, komisję złożoną z przedstawicieli nadzorujących zjednoczeń w obu zakładach, która ustaliła podział zadań. Dalszym sformułowaniem tej gałęzi produkcji było podporządkowanie w 1964 r. zakładu Belma Zjednoczeniu Przemysłu Maszyn i Aparatów Elektrycznych. Zasadniczym zwrotom w kierunku skoordynowania prac rozwojowych było powołanie w II kwartale 1965 r. Pomorskiego Ośrodka Rozwojowego Aparatury Przeciwybuchowej, z centralą w zakładzie Apator i filią w zakładzie Belma oraz sekcją w zakładzie ZWAR.

Na produkowana obecnie w szerokim asortymencie (kilkaścioletnią pozycji katalogowych) aparaturę ognioodpornoścą składają się głównie różne rodzaje zestawy normalnych aparatów łączeniowych i zabezpieczających oraz przyszytów pomiarowych (produkowanych przez różne zakłady), zmontowane we wspólnej obudowie ognioodpornościowej. Z punktu widzenia przeznaczenia są to sieciowe urządzenia rozdzielcze lub urządzenia manewrowe, łączeniowo-strojace, do silników elektrycznych, a także osprzęt do tych urządzeń.

Spośród tych licznych urządzeń zostaną omówione tylko niektóre, najbardziej charakterystyczne.

Zapoczątkowana przez ten typ produkcja rodziny wyłączników stycznicowych KWSO była stopniowo rozbudowana na dalsze ich odmiany i wielkości (50 A i 160 A). Udoskonalono w nich konstrukcję obudowy i układ elektryczny; stosowano nowe typy poszczególnych aparatów w miarę ich pojawiania się

310

311
w produkcji. Ostatnio zaczęto stosować w tych urządzeniach obwody sterownicze i ziemnozwarcie iskrobezpieczne.

Druga grupa wyrobów stanowiły kopalniane wyłączniki wiertarkowe. W 1954 r. wprowadzono do produkcji wyłącznik wiertarkowy typu WSWO-1,5 do pojedynczych wiertarek i typu KWSO-3,5 — do dwóch wiertarek. W sieciach o napięciu 500 V służą do zasilania za pośrednictwem transformatora ręcznych wiertarek górniczych o napięciu 24 V i sieci oświetleniowej o napięciu 125 V. Ich zmodyfikowaną wersją, wprowadzoną do produkcji w 1964 r., były zespoły wiertarkowe typu KWSO-1,6 i KZWOJ-3,5 z obudowami iskrobezpiecznymi.

Z pozostałych wyrobów zakładu Apator zasługuje na wzmiankę urządzenie do ciągłej kontroli stanu izolacji sieci w kopalniach, typu UKSJO, którego produkcję uruchomiono w 1960 r.

Zakład Belma podjął od 1956 r. na szerzszą skalę prace nad modernizacją dotychczas produkowanych wyrobów i projektowaniem nowych typów. Wobec tych prac było konstruowanie i uruchomienie produkcji ok. 40 odmian aparatów. Część z nich była produkowana przejściowo i zastępowana bardziej nowoczesnymi.

Spośród nich można wymienić przykładowo:

— Wyłącznik zapadkowy ognioszczelny typu KWSO-400 (350 A, 500 V).
— Jego podstawowym elementem był wyłącznik typu ATK. Urządzenie to było produkowane od 1957 do 1961 r., po czym zostało zastąpione bardziej nowoczesnymi odmianami typu WZO-400 i WZO-200, z wyłącznikiem typu APU.

— Wyłącznik stykowy ognioszczelny typu KWSO-350 do zdalnego łączenia i zabezpieczenia silników napędowych maszyn górniczych o mocy do 120 kW. Produkowany od 1957 r. do 1962 r. Zastąpiony bardzo nowoczesnymi odmianami typu KWSO-350 k (do 150 kW) i typu KWSO-250 (do 100 kW).

— Grupa wyłączników stykowych typu SWSO do zdalnego łączenia silników o mocach 8, 18 i 24–24 kW.

Aparatura trakcyjna [3.2, 3.34]

Produkcja aparatów trakcyjnych w okresie międzywojennym ograniczała się do paru prostych aparatów tramwajowych: nastawników, wyłączników samoczynnych, solenoidów hamulcowych i oporników.

W okresie powojennym, w związku z modernizacją taboru tramwajowego i wzrostem tempa elektryfikacji kolei i rozpowszechnianiem się elektrycznego transportu wewntrzszladowego, produkcja aparatów trakcyjnych stała się po- ważną gałęzią przemysłu elektrotechnicznego, zasługującą na oddzielne omówienie.

Z punktu widzenia rodzaju trakcji aparaty te można podzielić zgodnie z ich przeznaczeniem na następujące grupy:

— aparaty do tramwajów (na napięciu 600 V prądzie stałego),
— aparaty do trakcji kolejowej sieciowej (na napięciu 3 000 V prądzie stałego),
— aparaty do trakcji kolejowej spalinowo-elektrycznej,
— aparaty do trakcji przemysłowej.
Przemysł elektrotechniczny w Polskiej Rzeczypospolitej Ludowej

Szczegółowe omawianie wszystkich tych aparatów byłoby niecelowe. Lepszy obraz daje ogólny przegląd osiągnięć w dziedzinie, w powiązaniu z rodzajami pojazdów elektrycznych, produkowanych przez przemysł taboru kolejowego.

Do pionierów w dziedzinie konstrukcji i uruchomienia w kraju produkcji aparatury tracykowej należeli: mgr inż. J. Malinowski i mgr inż. W. Zajączkowski.

Na miejsce tramwaju typu N zakład Konstal uruchomił produkcję nowoczesnego, szybkobieżnego i cichobieżnego tramwaju typu 13N, z pośrednim rozrządem styznikowym i samoczynnym rozruchem. Wyposażenie elektryczne tego tramwaju obejmuje ponad 30 rodzajów aparatów elektrycznych, m.in. elektromagnetyczny styznik linii; zespół nastawników składający się z nastawnika jazdy, nastawnika hamowania i nawrotnika; rozruchowy bębnowy z napędem silnikowym; styzniki manewrowe; przekaźniki; hamulce szynowe itp. Układ elektryczny był wzorowany na amerykańskim typie tramwaju PCC. Pierwsze tramwaje typu 13N były wyposażone w aparaturę importowaną. Jej produkcję w kraju uruchomił zakład Elan w 1961 r.

Aparatura do lokomotyw elektrycznych sieciowych. Pierwszymi wyprodukowalnymi w kraju lokomotywami elektrycznymi były lokomotywy towarowe o układzie osi Co—Co (oznaczenie PKP — ET-21), oparte na dokumentacji radzieckiej.

W 1952 r. przemysł elektrotechniczny otrzymał ze Związku Radzieckiego dokumentację konstrukcyjną i technologiczną na aparaty elektryczne przeznaczone do tej jednostki. Produkcja ich została zlokalizowana głównie w zakładzie Elan (odłączniki obwodów głównych, nawrotniki, styzniki elektromagnetyczne i elektromechaniczne, zawory elektropneumatyczne, wiele typów przekaźników), a częściowo w zakładzie Apena (nastawnik grupowy, wyłącznik szybki prądu stałego) i w zakładzie Elester (nastawnik jazdy, oporniki). W 1957 r. został oddany do eksploatacji prototyp lokomotywy wyposażonej całkowicie w krajową aparaturę.

Rys. 3.79. Rozruchnik typu GBT-373 do tramwaju 13N
Rys. 3.80. Styzniki prądu stałego typu SNT do obwodów sterowania tramwaju 13N

Ponieważ prędkość tej lokomotywy (90 km/h) była niewystarczająca dla potrzeb PKP, w 1960 r. została zawarta umowa z angielskim koncernem Associated Electrical Industries na dostawę dwudziestu lokomotyw o układzie osi Bo—Bo, prędkości maksymalnej 125 km/h; umowa objęła dostarczenie pełnej dokumentacji do uruchomienia w kraju produkcji tych lokomotyw (oznaczenie PKP — EU 07).

Na podstawie tej dokumentacji zakład Elta przystąpił do uruchomienia produkcji, wprowadzając w niej pewne własne udoskonalenia. Objęły one m.in.:
— zastosowanie izolacji z włókna szklanego z żywicą epoksydową w elementach obwodu 3 kV,
— zalewanie cewek uzwojeń prądowych i napięciowych żywicą epoksydową z wypełnieniem kwarecznym,
— zastosowanie polipropylenu na elementy zaworów.

Pierwsze dwa komplety aparatów zostały dostarczone producentowi lokomotywy — zakładowi Pafawag — w 1965 r.
Aparatura do jednostek pociągowych. Mniej więcej równolegle z produkcją lokomotyw była uruchamiana produkcja trójczołnowych jednostek pociągowych (wagon silnikowy i dwa docięcne).

W 1955 r. fabryki elektrotechniczne, produkujące aparaty do lokomotyw, przystąpiły do projektowania wyposażenia elektrycznego dla tych jednostek. Częściowo wykorzystano do tego celu aparaty stosowane w lokomotywach, w niezmienionej postaci lub po odpowiednim zaadaptowaniu, znaczna jednak ich część była projektowana od początku.

Zakład Efester opracował nowy nawrotnik, zakład Elan — 24 rodzajów nowych aparatów (m.in. styczniki, przekaźniki), zakład Apena — nastawnik krzywkoowy.

W latach 1963—1965 zakład ten uruchomił produkcję zestawów aparatów do lokomotyw o mocy 300 i 800 KM oraz wykonał trzy prototypowe komplety aparatów do lokomotyw 1 600 KM. Do ciekawych spośród nich należą:

— specjalny nawrotnik, pełniący równocześnie funkcję odczynnika silników,
— nastawnik (sterownik), umożliwiający napęd z dwóch miejsc wału krzywkoowego sterującego styczniki,
— sprzęgła (łączka) do sterowania dwóch sprzężonych lokomotyw z jednego stanowiska maszynisty,
— przekaźniki prądowe, samoczynnie nadzorujące osłabienie wzbudzenia silników trakcyjnych.

Aparatura do trakcji elektrycznej przemysłowej. Prace rozwojowe w tej dziedzinie objęły aparaturę przeznaczoną do dwóch grup pojazdów:

1. Do lokomotyw elektrycznych, akumulatorowych i sieciowych prądu stałego, przede wszystkim dla przemysłu węglowego. Produkcję tych aparatów rozpoczęto już w 1949 r. Wykonują ją zakłady Elan, Efester i Apator. Produkowane są m.in. aparaty w obudowie ognioszczelnej do lokomotyw przeznaczonych do pracy w kopalniach węgla o stopniu niebezpieczeństwa „c”.

2. Do wózków akumulatorowych, zwykłych i widłowych. Producentem jest zakład Elan.

Wyposażenie elektryczne wagonów osobowych. Oprócz wymienionego wyposażenia trakcyjnego, w ściślim tego słowa znaczeniu, są produkowane dla potrzeb przemysłu taboru kolejowego elementy elektryczne układów oświetlenia i ogrze-